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Introduction

• Unconventional reservoirs are essentially any reservoir that 

requires special recovery operations 
 Tight-gas sands, 

 Oil shales, 

 Heavy oil sandstones, 

 Gas shales, and 

 Coal-bed methane

• HUGE amounts of unconventional resources! 

http://www.slb.com/services/technical_challenges/geomechanics/reservoir_management/unconventional_reservoirs.aspx
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Introduction (Cont.)

• The production of unconventional reservoirs has 

increased:
 Directional drilling 

 Hydraulic fracturing  

Percentage of U.S. Oil and Natural Gas from Tight Oil and Shale Gas
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Hydraulic Fracturing 

• Successful economical production depends on the existence 

of effective conductivity

• Hydraulic fracturing is a well stimulation treatment

• It involves the coupling of at least three processes: 

 The mechanical deformation induced by the fluid pressure 

on the fracture surfaces;

 The flow of fluid within the fracture;  

 The fracture propagation 
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Numerical simulations

• Continuum-based Numerical Methods

 FEM 

 XFEM 

• Discrete element method (DEM)

 BPM

• Numerically simulation of hydraulic fracturing that model 

the actual process can be very difficult

 Size and time of simulation

 A suitable mesh on the evolving crack surface

 Large-scale slip and opening of fracture elements are 

not allowed
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Peridynamic (PD) Theory

• PD is a non-local method 

• PD establishes the connection between classical continuum 

mechanics and molecular dynamics

Local PD Molecular dynamics
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• A particle (infinitesimally small free-body) does obey the 

Newton’s second law. 

• The physical interaction between two particles is called 

“bond”

• In the case of the local theory, points of a material are 

influenced by the point in the vicinity
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• Each point interacts with an infinite number of points in a 

certain distance named “material horizon”, 𝛿

• It is enabled to compute the displacement everywhere 

whether or not discontinuities present

• If the radius , 𝛿, becomes infinitely large, the PD theory 

changes to the molecular dynamics 

• If the radius , 𝛿, decreases to the size of the particle 

dimension, the PD theory will switch to the classical 

continuum mechanics
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• The peridynamic equation of motion at a reference

configuration of x and time t is given as:

𝜌
𝜕2𝑢

𝜕𝑡2
=  

𝐻

𝑑𝑉𝑥 𝑓(𝑢(𝑥
′ , 𝑡), 𝑢 𝑥, 𝑡 , 𝑥′, 𝑥, 𝑡) + 𝑏(𝑥, 𝑡)

• PD 

 Bond-Based

 State-Based

Density

displacement 

vector 

Neighborhood of x

Integration Variable

Response function Body Force
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• Simulation

Computing 

Damage

Applying 

HF 

Pressure

•Applying 

boundary 

Condition 

•Applying 

Models

•Creating  

Geometry 

•region, create 
box; 

•read data 
command

• Viscoelastic
•Damage per 

atom

•Dilatation per 
atom

• Fixing the lower 
wall

•Three different 
injection rate



PDLAMMPS Simulation

• PDLAMMPS coding

 Units and Dimension 

3D

SI units

 Dimensions (mm): 

Simulation domain: 80 mm*80mm*80mm

Perforation: D=10mm, L=20mm

 Lattice

 Lattice is simply a set of points in space

Region 
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80mm
80mm

80mm

r0

r

θ

Geometry

(
𝑟

𝑟0
= 1, 2, 3, 4)



16

• Horizon  

 𝛿: 2-5 times of Lattice size

• Lattice

 1/3 of 𝛿
 The lattice style must be consistent with the dimension of 

the simulation

• Fixing the lowerwall

• Different injection rates 

 2.07, 2.96 and 3.85 bbl/min

• Damage

 Damage per atom

 Dilatation per atom

PDLAMMPS Simulation (Cont.)
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• Damage or fracture is incorporated into the model through the 

bond when their strain exceed some critical value, 𝑆0
• Once a bond breaks, it does not sustain any force any longer 

Damage

𝑆0 𝑡, 𝜂, 𝜉 = 𝑆00 − 𝛼𝑠𝑚𝑖𝑛(𝑡, 𝜂, 𝜉)

𝜉 = 𝑥 − 𝑥′ 𝜂 = 𝑢′ − 𝑢
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Time step 2.07 bbl/min 2.96 bbl/min 3.85 bbl/min 

600 

 
   

1500 

 
   

 

Damage
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Conclusion

• High fidelity simulation that can bridge multiple scales for 

molecular to  micro-scales 

• Low computed cost

• Easy to integrate with continuum mechanics 

• The most important advantage of the peridynamic approach 

over other methods for fracture modelings is that it does not 

require any additional formulation that determines when a crack 

should grow, its velocity, direction, branching and relationship 

between length and width of the crack.

• The equation of motion deals with all of these phenomena
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Questions?


